
Representati ons of true-to-life visual imagery is one of the most intriguing

and challenging tasks in computer science. Within that fi led, generati ng 3D

scenes for computer gaming is one of the most demanding tasks on PCs

and consoles today, as consumers demand richer and faster applicati ons, in

parti cular in the gaming fi eld. The increased demand for rich applicati ons

leads to ever growing demand for increased processing power.
R&D Headquarters:

Kfar Nett er Industrial Park
P.O.B. 3785 Kfar Nett er 40593
Israel

T: +972-9-864-96-00
F: +972-9-885-77-85

www.lucidlogix.com

Sales & Marketi ng Headquarters:

5201 Great America Pkwy. Suite 32
Santa Clara, California 95054
USA
T: 408-850-7241
F: 408-850-7242

sales@lucidlogix.com

C� � cts

About Lucid
LucidLogix is a fabless semiconductor company that has developed the only universal multi -
GPU soluti on. The LucidLogix HYDRA engine allows interoperability between diff erent GPU
soluti ons, dramati cally simplifying the process of increasing graphics rendering power for
consumer gaming and other 3D visual applicati ons. The company’s innovati ons are protected
by more than 60 patents and patents pending. LucidLogix is a privately-owned company based
in Israel and backed by Rho Ventures, Giza Venture Capital, Genesis Partners and Intel Capital.

For more informati on, visit www.lucidlogix.com.

HYDRA Engine ASIC Flexibility
The implementati on of the HYDRA engine is done in ASIC hardware with the support of a soft ware
driver.

The ASIC is located between the Northbridge and the GPUs, as shown in fi gure 4.

The HYDRA engine scales performance of multi -GPU confi gurati ons from any GPU vendor and
will scale relati ve to each GPU’s individual performance. In other words, the GPUs do not need
to be identi cal. Due to today’s operati ng system limitati ons, the HYDRA soluti on requires the
GPUs to be from the same vendor. However, the HYDRA engine is designed to support mixing and
matching of diff erent brand GPUs within a single system. As the operati ng systems develop to
support this functi onality, the HYDRA system full implementati on can be realized.

The HYDRA ASIC handles all connecti vity between the CPU and the GPU and between the GPUs
through a full-duplex wired speed implementati on. As such, the soluti on is connector-free and
does not require any GPU to GPU connector.

This freedom of choice allows motherboard and add-in board OEMs and ODMs to design the
price-performance-power systems that are best targeted for their markets. The universal and
fl exible approach is especially important when it comes to mainstream mass market segment.

The HYDRA system is the fi rst to create a real alternati ve to the identi cal multi -GPU specifi c
soluti ons off ered by current graphic cards vendors. By eliminati ng the bias to any specifi c GPU,
the HYDRA allows system builders the fl exibility to design a custom system.

Additi onal Implementati ons
Lucid’s HYDRA engine high connecti vity performance and lower power consumpti on has been
designed bott om up to load-balance GPUs for a variety of systems. The HYDRA engine is appropriate
GP-GPU and GPU based applicati ons, such as High Performance Computi ng (HPC), Broadcast & Film,
Digital Signage, advanced Financial Simulati ons, Research, Life Sciences and Oil & Gas.

Optional
Display Display

NorthBridge

GPU #1 GPU #2

CPUCPU

NorthBridge

Figure 4: Lucid HYDRA Implementati on

RevWP-UNSOL-080909v1

Univ� sal Mu� i

GPU Soluti�
Whitepaper
Sep, 2009

To load-balance between the GPUs, two common methods are
used today:

• Split Frame/Tiling,
where each GPU
displays a porti on
of the screen space.
This methodology has
limited use today.

• Alternate Frame,
where GPUs take turns
displaying the enti re
screen, so each has
longer to render. This is
most commonly used in
today’s soluti ons

Split Frame / Tiling

The split frame or ti ling methodology is not commonly used
today. When implemented, each GPU is confi gured to handle a
specifi c part of the screen, for example, upper or lower part in a
dual-GPU confi gurati on. The exact positi ons of where the frame
splits are determined dynamically according to the processing
power required to process each part.

The split frame method reduces the number of pixels processed
by each so that the pixel shading bott leneck is reduced.
However, each GPU sti ll needs to store in its memory the enti re
screen, so the geometry shader and memory bott lenecks are not
aff ected. This memory storage acti vity slows down the system
and consti tutes a major drawback of this methodology.

Split frame/ ti ling works best when there are no inter-frame
dependencies and the per-pixel operati on is the signifi cant
bott leneck, which is common to many of the games these days.
However, it breaks down when there are other bott lenecks or
inter-frame dependencies and render-to-texture techniques
exist in the applicati on.

Alternate Frame

The Alternate Frame method is the most commonly used for
today’s multi ple-GPU soluti ons. In this method, each frame is
assigned alternately to each GPU, such that each GPU performs
the rerndering while the other GPU is rendering the previous
frame. This provides more ti me for each GPU to render the
frame. For example, in a two-GPU scenario, the fi rst GPU
handles the even (n) frames and the second GPU handles the
odd (n+1) frames. The main drawback of this method is latency
and scaling over two GPUs. With high frame rates, the latency is
rarely noti ceable.

Alternate Frame methodology performs best when each
consecuti ve frame is well balanced, such that it takes
approximately the same ti me to render each frame, and the
GPUs are identi cal in their performance.

When the GPUs are not identi cal, or inter-frame dependencies
exist in the applicati on, this methodology tends to break down.
Inter-frame dependencies are found in most of the game ti tles
developed in the last few years.

Real Time Distributed Processing
A multi -GPU soluti on that will be accessible to most users should
meet the following requirements:

• Allow users to choose their favorite GPU for the
performance and price

• Enable choice for future system upgrades. Consumers
should not have to scrap their current graphics technology
or be locked-in to their existi ng vendor when they are
looking for an add-on to their existi ng system.

• Eliminate the need for special or proprietary connectors

• Provides applicati on scalability when more than one graphic
card is installed.

• Allow non-identi cal GPUs to work in a system, thereby
avoiding the need to replace both graphics cards when one
is faulty or outdated.

 With these requirements in mind, LucidLogix developed
the Lucid HYDRA Engine. The Lucid HYDRA engine is the fi rst
dedicated silicon soluti on implementi ng real ti me distributed
processing (RTDP) to deliver these requirements.

Load balancing in a frame & between frames

The HYDRA engine contains processes to analyze the frames
before rendering and intelligently distribute the rendering tasks
between the GPUs on board. The frame decision mechanism
resolves bott lenecks and inter-frame dependencies prior to
rendering, in real ti me, such that there is no additi onal latency.

The HYDRA engine contains a generic soluti on for diff erent
games, as well as rendering methods and an auto-correct load-
balancing scheme for scaling. For GPUs that are not identi cal in
performance or manufacturer; the HYDRA engine allocates the
resources appropriately during processing for opti mizati on of
the GPU rendering power.

The following image (fi gure 3) shows the engine architecture:

The technology’s hardware core, the Graphics Processing Unit (GPUs), is one of the major factors determining computer performance in
displaying 3D graphics scenes. However, GPU manufactures are sti ll limited by die size, power and heat dissipati on issues, as well as price/
performance limitati ons set by the market.

As a result, one of today’s common soluti ons for upgrading performance is to use multi ple GPUs to share the load of graphics performance.
Not only does this maintain reasonable power consumpti on, it also allows consumers to upgrade existi ng cards by using Add-in Graphics
Boards (AiBs).

The demand for scalable platf orms and uncompromised visual quality is migrati ng from high end enthusiasts to the mainstream segments.
This mass market segment is now demanding great graphics performance and at the same ti me expecti ng new soluti ons to be fl exible, easy
to deploy and maintain pricing levels.

Today’s multi -GPU soluti ons have been developed by a select number of vendors, and require the consumer to use only identi cal GPUs
from that parti cular vendor, which seriously limits consumer choice. Another obstacle is the requirement for special multi -GPU connectors.
Furthermore, to install multi ple GPUs, the consumer needs to be tech-savvy. For most consumers, getti ng the proper hardware and
performing this kind of installati on is beyond their technical abiliti es.

To overcome these obstacles, multi -GPU support needs to provide a smoother upgrade path and more fl exibility for regular users. In
order to enable this, a totally diff erent approach is needed to interoperability between GPUs and to the multi -GPU enabling technology
architecture.

This white paper discusses graphics processing architecture and presents a new technological approach that can enable multi -GPU
processing independent of the vendor. Through this approach, consumers will be able to upgrade to multi ple GPU processing and load
balancing, with less complexity and without being locked into a parti cular vendor.

Graphics Processing Architecture Overview
The architecture of today’s Graphics Processing Unit (GPU)
includes the primary computi ng components shown in Figure 1
below

The geometry processor (also known as the geometry shader)
is responsible for processing polygons and creati ng the
actual order between the objects, their locati on in the frame,
perspecti ve distorti on, and parti al removal of hidden polygons.
The output of the processor/shader is a raster polygon. Other
polygons that are in a hidden part of an object, or objects that
are hidden behind other objects, are discarded.

The pixel processor (also known as the pixel shader in advanced
architectures) fi lls each polygon with the correct texture, adding
shades, lighti ng eff ects and color variati ons. The fi nal output of
the two processors is stored in a frame buff er memory and sent
to the display.

This sequenti al processing of the frame creates three major
potenti al bott lenecks:

• Geometry shader: bott leneck processing of frames where
there are many changes like movements of objects or new
objects appear

• Pixel shader: bott leneck of high “per-pixel-operati ons” such
as high resoluti ons and anti -aliasing

• Memory capacity and access ti me: bott lenecks in memory
capacity in major operati ons, for example, when large
textures are being swapped

Diff erent parallelizati on methods should be implemented in the
various applicati on scenarios to resolve each of the bott lenecks
and allows bett er performance scaling. The fl exibility to select
the correct parallelizati on method in real-ti me that matches the
applicati on scenario is essenti al for getti ng opti mized results.
The selecti on should be such that the correct parallelizati on
method is acti vated based on the current applicati on scenario.

 Parallel Graphics Processing Methods
To address the need for processing power, the GPU vendors
have turned to the multi -GPU approach, similar to the multi -
core approach of the general CPU and even network processors.
Using this approach, any number of graphics cards can
simultaneously process a single frame within an applicati on or
game. In this topology, GPUs are connected to the Northbridge
via the PCIe slots and one of the graphics cards is connected to
the display.

d

T
d
p

A
N
B

T
T
to

Mu� i GPU Soluti�

Frame BufferVideo Memory

Pixel ProcessorGeometry ProcessorFrom CPU To Display

A B C

A B C

HYDRA ENGINE

CPU

Optional
Display Display

GPU #1 GPU #2

CPU

HYDRA ENGINEDRA ENGINDRA ENGIN

GPU #2GPU #1

Historical Repository

Behavioral profile
data base

Video
Memory

GPU#2

Application profiling
and analysis

Parallel policy
management

Distributed graphics
function control

Decompose module Distributed module Re-composemodule

Video
Memory

GPU#1

Video
Memory

GPU#3

Display

Figure 3: The Engine Architecture

Figure 2: Basic Multi -GPU Architecture

Figure 1: Standard GPU Architecture

