HYDRA Engine ASIC Flexibility

The implementation of the HYDRA engine is done in ASIC hardware with the support of a software
driver.

The ASIC is located between the Northbridge and the GPUs, as shown in figure 4.

The HYDRA engine scales performance of multi-GPU configurations from any GPU vendor and
will scale relative to each GPU’s individual performance. In other words, the GPUs do not need

to be identical. Due to today’s operating system limitations, the HYDRA solution requires the
GPUs to be from the same vendor. However, the HYDRA engine is designed to support mixing and
matching of different brand GPUs within a single system. As the operating systems develop to
support this functionality, the HYDRA system full implementation can be realized.

The HYDRA ASIC handles all connectivity between the CPU and the GPU and between the GPUs
through a full-duplex wired speed implementation. As such, the solution is connector-free and
does not require any GPU to GPU connector.

This freedom of choice allows motherboard and add-in board OEMs and ODMs to design the
price-performance-power systems that are best targeted for their markets. The universal and
flexible approach is especially important when it comes to mainstream mass market segment.

The HYDRA system is the first to create a real alternative to the identical multi-GPU specific
solutions offered by current graphic cards vendors. By eliminating the bias to any specific GPU,
the HYDRA allows system builders the flexibility to design a custom system.

Additional Implementations

Lucid’s HYDRA engine high connectivity performance and lower power consumption has been
designed bottom up to load-balance GPUs for a variety of systems. The HYDRA engine is appropriate
GP-GPU and GPU based applications, such as High Performance Computing (HPC), Broadcast & Film,
Digital Signage, advanced Financial Simulations, Research, Life Sciences and Oil & Gas.

About Lucid

LucidLogix is a fabless semiconductor company that has developed the only universal multi-
GPU solution. The LucidLogix HYDRA engine allows interoperability between different GPU
solutions, dramatically simplifying the process of increasing graphics rendering power for
consumer gaming and other 3D visual applications. The company’s innovations are protected
by more than 60 patents and patents pending. LucidLogix is a privately-owned company based
in Israel and backed by Rho Ventures, Giza Venture Capital, Genesis Partners and Intel Capital.

For more information, visit www.lucidlogix.com.

CONTACTS

R&D Headquarters: Sales & Marketing Headquarters:
Kfar Netter Industrial Park 5201 Great America Pkwy. Suite 32
P.O.B. 3785 Kfar Netter 40593 Santa Clara, California 95054

Israel USA

T: +972-9-864-96-00 T: 408-850-7241

F: +972-9-885-77-85 F:408-850-7242
www.lucidlogix.com sales@Iucidlogix.com

cPy

il

NorthBridge

i

HYDRA ENGINE

B

—

GPU#1 GPU 2 ’

-

-

Optional
Display

Figure 4: Lucid HYDRA Implementation

RevWP-UNSOL-080909v1

UNIVERSAL MULT!
GPU SOLUTION

Whitepaper
Sep, 2009

()

HYDRA
ENGINE

by Lucid

Representations of true-to-life visual imagery is one of the most intriguing
and challenging tasks in computer science. Within that filed, generating 3D
scenes for computer gaming is one of the most demanding tasks on PCs
and consoles today, as consumers demand richer and faster applications, in
particular in the gaming field. The increased demand for rich applications

leads to ever growing demand for increased processing power.

MULT! GPU SCLUTION

The technology’s hardware core, the Graphics Processing Unit (GPUs), is one of the major factors determining computer performance in
displaying 3D graphics scenes. However, GPU manufactures are still limited by die size, power and heat dissipation issues, as well as price/

performance limitations set by the market.

As a result, one of today’s common solutions for upgrading performance is to use multiple GPUs to share the load of graphics performance.
Not only does this maintain reasonable power consumption, it also allows consumers to upgrade existing cards by using Add-in Graphics

Boards (AiBs).

The demand for scalable platforms and uncompromised visual quality is migrating from high end enthusiasts to the mainstream segments.
This mass market segment is now demanding great graphics performance and at the same time expecting new solutions to be flexible, easy

to deploy and maintain pricing levels.

Today’s multi-GPU solutions have been developed by a select number of vendors, and require the consumer to use only identical GPUs

from that particular vendor, which seriously limits consumer choice. Another obstacle is the requirement for special multi-GPU connectors.

Furthermore, to install multiple GPUs, the consumer needs to be tech-savvy. For most consumers, getting the proper hardware and

performing this kind of installation is beyond their technical abilities.

To overcome these obstacles, multi-GPU support needs to provide a smoother upgrade path and more flexibility for regular users. In
order to enable this, a totally different approach is needed to interoperability between GPUs and to the multi-GPU enabling technology

architecture.

This white paper discusses graphics processing architecture and presents a new technological approach that can enable multi-GPU
processing independent of the vendor. Through this approach, consumers will be able to upgrade to multiple GPU processing and load
balancing, with less complexity and without being locked into a particular vendor.

Graphics Processing Architecture Overview

The architecture of today’s Graphics Processing Unit (GPU)
includes the primary computing components shown in Figure 1
below

Video Memory Frame Buffer
® ¢ ¢ |

From CPU » Geometry Processor 6 Pixel Processor To Display

'
Figure 1: Standard GPU Architecture

The geometry processor (also known as the geometry shader)
is responsible for processing polygons and creating the

actual order between the objects, their location in the frame,
perspective distortion, and partial removal of hidden polygons.
The output of the processor/shader is a raster polygon. Other
polygons that are in a hidden part of an object, or objects that
are hidden behind other objects, are discarded.

The pixel processor (also known as the pixel shader in advanced
architectures) fills each polygon with the correct texture, adding
shades, lighting effects and color variations. The final output of
the two processors is stored in a frame buffer memory and sent
to the display.

This sequential processing of the frame creates three major
potential bottlenecks:

e Geometry shader: bottleneck processing of frames where
there are many changes like movements of objects or new
objects appear

e Pixel shader: bottleneck of high “per-pixel-operations” such
as high resolutions and anti-aliasing

e Memory capacity and access time: bottlenecks in memory
capacity in major operations, for example, when large
textures are being swapped

Different parallelization methods should be implemented in the
various application scenarios to resolve each of the bottlenecks
and allows better performance scaling. The flexibility to select
the correct parallelization method in real-time that matches the
application scenario is essential for getting optimized results.
The selection should be such that the correct parallelization
method is activated based on the current application scenario.

Parallel Graphics Processing Methods

To address the need for processing power, the GPU vendors
have turned to the multi-GPU approach, similar to the multi-

core approach of the general CPU and even network processors.

Using this approach, any number of graphics cards can
simultaneously process a single frame within an application or
game. In this topology, GPUs are connected to the Northbridge
via the PCle slots and one of the graphics cards is connected to
the display.

To load-balance between the GPUs, two common methods are
used today:

e Split Frame/Tiling, [o

where each GPU é%;

displays a portion

of the screen space. [HmImmNE
This methodology has g"
limited use today. émn&

—1

GPU#1 GPU #2 ’

longer to render. This is

most commonly used in J l

Figure 2: Basic Multi-GPU Architecture

e Alternate Frame,
where GPUs take turns
displaying the entire
screen, so each has

Split Frame / Tiling

The split frame or tiling methodology is not commonly used
today. When implemented, each GPU is configured to handle a
specific part of the screen, for example, upper or lower partin a
dual-GPU configuration. The exact positions of where the frame
splits are determined dynamically according to the processing
power required to process each part.

The split frame method reduces the number of pixels processed
by each so that the pixel shading bottleneck is reduced.
However, each GPU still needs to store in its memory the entire
screen, so the geometry shader and memory bottlenecks are not
affected. This memory storage activity slows down the system
and constitutes a major drawback of this methodology.

Split frame/ tiling works best when there are no inter-frame
dependencies and the per-pixel operation is the significant
bottleneck, which is common to many of the games these days.
However, it breaks down when there are other bottlenecks or
inter-frame dependencies and render-to-texture techniques
exist in the application.

Alternate Frame

The Alternate Frame method is the most commonly used for
today’s multiple-GPU solutions. In this method, each frame is
assigned alternately to each GPU, such that each GPU performs
the rerndering while the other GPU is rendering the previous
frame. This provides more time for each GPU to render the
frame. For example, in a two-GPU scenario, the first GPU
handles the even (n) frames and the second GPU handles the
odd (n+1) frames. The main drawback of this method is latency
and scaling over two GPUs. With high frame rates, the latency is
rarely noticeable.

Alternate Frame methodology performs best when each
consecutive frame is well balanced, such that it takes
approximately the same time to render each frame, and the
GPUs are identical in their performance.

When the GPUs are not identical, or inter-frame dependencies
exist in the application, this methodology tends to break down.
Inter-frame dependencies are found in most of the game titles
developed in the last few years.

Real Time Distributed Processing

A multi-GPU solution that will be accessible to most users should
meet the following requirements:

e Allow users to choose their favorite GPU for the
performance and price

e Enable choice for future system upgrades. Consumers
should not have to scrap their current graphics technology
or be locked-in to their existing vendor when they are
looking for an add-on to their existing system.

e Eliminate the need for special or proprietary connectors

® Provides application scalability when more than one graphic
card is installed.

e Allow non-identical GPUs to work in a system, thereby
avoiding the need to replace both graphics cards when one
is faulty or outdated.

With these requirements in mind, LucidLogix developed

the Lucid HYDRA Engine. The Lucid HYDRA engine is the first
dedicated silicon solution implementing real time distributed
processing (RTDP) to deliver these requirements.

Load balancing in a frame & between frames

The HYDRA engine contains processes to analyze the frames
before rendering and intelligently distribute the rendering tasks
between the GPUs on board. The frame decision mechanism
resolves bottlenecks and inter-frame dependencies prior to
rendering, in real time, such that there is no additional latency.

The HYDRA engine contains a generic solution for different
games, as well as rendering methods and an auto-correct load-
balancing scheme for scaling. For GPUs that are not identical in
performance or manufacturer; the HYDRA engine allocates the
resources appropriately during processing for optimization of
the GPU rendering power.

The following image (figure 3) shows the engine architecture:

Behavioral profile
data base

T) Applcaton profing sy Parallpolcy gy Distrouted graphics

and andlysis management funclion control
|—) Historical Repository |

Video
> e —
Decompose module | Distribufed module == Re-composemodule
GPUA
'S

Video
Memory

GPU#2
®
®
®

Video
Memory.

GPU#3

I

Figure 3: The Engine Architecture

